Maximum Square Subarray: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Maximum Square Subarray (Maximum Subarray Problem)}} == Description == Given an $n \times n$ matrix find a maximum subarray with sides of equal length. == Related Problems == Generalizations: Maximum Subarray Related: 1D Maximum Subarray, 2D Maximum Subarray == Parameters == <pre>n: dimension of array</pre> == Table of Algorithms == Currently no algorithms in our database for the given problem. == Reductions FROM Problem == {| cl...") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
$n$: dimension of array | |||
== Table of Algorithms == | == Table of Algorithms == |
Latest revision as of 08:23, 10 April 2023
Description
Given an $n \times n$ matrix find a maximum subarray with sides of equal length.
Related Problems
Generalizations: Maximum Subarray
Related: 1D Maximum Subarray, 2D Maximum Subarray
Parameters
$n$: dimension of array
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Max-Weight K-Clique | if: to-time: $O(n^{d+{1}-\epsilon})$ for $d$-dimensional hypercube arrays then: from-time: $O(n^{k-\epsilon})$ on $n$ vertex graphs for $k=d+{1}$ |
2016 | https://arxiv.org/pdf/1602.05837.pdf | link |