Determinant of Matrices with Integer Entries: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


n: dimension of matrix
$n$: dimension of matrix


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 16: Line 16:
|-
|-


| [[Bareiss algorithm (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries)|Bareiss algorithm]] || 1968 || $O(n^{5}L^{2} (log(n)$^{2} + L^{2})) || $O(n^{2}(n*log(n)$+nL)) || Exact || Deterministic || [https://www.ams.org/journals/mcom/1968-22-103/S0025-5718-1968-0226829-0/S0025-5718-1968-0226829-0.pdf Time]
| [[Bareiss algorithm (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries)|Bareiss algorithm]] || 1968 || $O(n^{5} L^{2} (\log(n)$^{2} + L^{2})) || $O(n^{2}(n*log(n)$+nL)) || Exact || Deterministic || [https://www.ams.org/journals/mcom/1968-22-103/S0025-5718-1968-0226829-0/S0025-5718-1968-0226829-0.pdf Time]
|-
|-
| [[Bareiss algorithm with fast multiplication (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries)|Bareiss algorithm with fast multiplication]] || 1968 || $O(n^{4}L(log(n)$ + L)log(log(n) + L)) || $O(n^{2}(n*log(n)$+nL)) || Exact || Deterministic ||   
| [[Bareiss algorithm with fast multiplication (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries)|Bareiss algorithm with fast multiplication]] || 1968 || $O(n^{4} L (\log(n)$ + L) \log(\log(n) + L)) || $O(n^{2}(n*log(n)$+nL)) || Exact || Deterministic ||   
|-
|-
|}
|}

Revision as of 08:24, 10 April 2023

Description

Calculate the determinant of a given matrix with integer matrices. For such matrices, the determinant is also an integer.

Parameters

$n$: dimension of matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Bareiss algorithm 1968 $O(n^{5} L^{2} (\log(n)$^{2} + L^{2})) $O(n^{2}(n*log(n)$+nL)) Exact Deterministic Time
Bareiss algorithm with fast multiplication 1968 $O(n^{4} L (\log(n)$ + L) \log(\log(n) + L)) $O(n^{2}(n*log(n)$+nL)) Exact Deterministic

Time Complexity Graph

Determinant of Matrices with Integer Entries - Time.png

Space Complexity Graph

Determinant of Matrices with Integer Entries - Space.png

Time-Space Tradeoff

Determinant of Matrices with Integer Entries - Pareto Frontier.png