Polynomial Interpolation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
== Parameters ==  
== Parameters ==  


n: number of points
$n$: number of points


d: dimension of space
$d$: dimension of space


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 33: Line 33:


[[File:Polynomial Interpolation - Time.png|1000px]]
[[File:Polynomial Interpolation - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Polynomial Interpolation - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Polynomial Interpolation - Pareto Frontier.png|1000px]]

Latest revision as of 09:12, 28 April 2023

Description

Given a finite number of points $x_1, \ldots , x_n$, some real constants $y_1, \ldots , y_n$ and a subspace $V$ of $\Pi^d$, find a polynomial $p \in V$, such that

$p(x_j) = y_j$, $j = 1, ... , n$

Parameters

$n$: number of points

$d$: dimension of space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Gaussian elimination -150 $O(n^{3})$ $O(n^{2})$ Exact Deterministic
Bjorck 1970 $O(n^{2})$ $O(n)$ Exact Deterministic Time & Space
Higham 1988 $O(n^{2})$ $O(n)$ Exact Deterministic Time & Space
Calvetti, Reichel 1993 $O(n^{2})$ $O(n)$? Exact Deterministic Time

Time Complexity Graph

Polynomial Interpolation - Time.png