Multiplication: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
== Parameters == | == Parameters == | ||
n: length of one of the integers, in bits | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:02, 15 February 2023
Description
Multiplication is one of the four elementary mathematical operations of arithmetic; with the others being addition; subtraction and division. Given two $n$-bit integers, compute their product, which should be a $2n$-bit integer.
Parameters
n: length of one of the integers, in bits
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Karatsuba Algorithm | 1962 | $O(n^{1.{5}8})$ | $O(n)$ auxiliary | Exact | Deterministic | Time |
Toom-3 | 1969 | $O(n^{1.{4}6})$ | $O(n)$ auxiliary | Exact | Deterministic | Time |
Long Multiplication | 1940 | $O(n^{2})$ | $O(n)$ auxiliary | Exact | Deterministic | |
Schönhage–Strassen algorithm | 1971 | $O(n logn loglogn)$ | $O(n)$ auxiliary? | Exact | Deterministic | Time |
Furer's algorithm | 2007 | $O(nlogn {2}^{O(log*n)$}) | $O(n)$ auxiliary? | Exact | Deterministic | Time |
De | 2008 | $O(nlogn {2}^{O(log*n)$}) | $O(n)$ auxiliary? | Exact | Deterministic | Time |
Harvey; Hoeven | 2019 | $O(nlogn)$ | $O(n)$ auxiliary?? | Exact | Deterministic | Time |
Harvey; Hoeven; Lecerf | 2015 | $O(nlogn {2}^{({3}log*n)$}) | $O(n)$ auxiliary?? | Exact | Deterministic | Time |
Covanov and Thomé | 2015 | $O(nlogn {2}^{O(log*n)$}) | $O(n)$ auxiliary?? | Exact | Deterministic | Time |
Covanov and Thomé | 2016 | $O(nlogn {2}^{({3}log*n)$}) | $O(n)$ auxiliary?? | Exact | Deterministic | Time |
Harvey; Hoeven; Lecerf | 2018 | $O(nlogn {2}^{({2}log*n)$}) | $O(n)$ auxiliary?? | Exact | Deterministic | Time |