1D Maximum Subarray (Maximum Subarray Problem)
Jump to navigation
Jump to search
Description
Given an array $A$ of length $n$, find $i, j$ with $1\leq i \leq j \leq n$ maximizing $\sum^j_{x=i} A(x)$, that is, find a contiguous subarray of $A$ of maximum sum
Related Problems
Generalizations: Maximum Subarray
Related: 2D Maximum Subarray, Maximum Square Subarray
Parameters
n: length of array
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Brute Force | 1977 | $O(n^{3})$ | $O({1})$ auxiliary | Exact | Deterministic | |
Grenander | 1977 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | |
Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) | 1977 | $O(n^{2})$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Shamos | 1978 | $O(nlogn)$ | $O(log n)$ auxiliary | Exact | Deterministic | |
Kadane's Algorithm | 1982 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | |
Perumalla and Deo | 1995 | $O(log n)$ | $O(n)$ auxiliary | Exact | Parallel | Time |
Gries | 1982 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Bird | 1989 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Ferreira, Camargo, Song | 2014 | $O(log n)$ | $O(n)$ auxiliary | Exact | Parallel | Time |