Integer Maximum Flow (Maximum Flow)

From Algorithm Wiki
Revision as of 15:34, 15 February 2023 by Admin (talk | contribs)
Jump to navigation Jump to search

Description

Maximum flow problems involve finding a feasible flow through a flow network that is maximum. In this variant, the capacities must be integers.

Related Problems

Generalizations: Non-Integer Maximum Flow

Subproblem: Unweighted Maximum Flow

Related: st-Maximum Flow, Non-integer Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow, Maximum Local Edge Connectivity

Parameters

V: number of vertices

E: number of edges

U: maximum edge capacity

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Ford & Fulkerson 1955 O(E2U) O(E) Exact Deterministic Time & Space
Dinitz 1970 O(V2E) O(E) Exact Deterministic Time & Space
Edmonds & Karp 1972 O(E2LogU) O(E) Exact Deterministic Time & Space
Karzanov 1974 O(V3) O(V2) Exact Deterministic Time & Space
Galil & Naamad 1980 O(VELog2V) O(E) Exact Deterministic Time & Space
Dantzig 1951 O(V2EU) O(VE)? Exact Deterministic
Dinitz (with dynamic trees) 1973 O(VELogU) O(E) Exact Deterministic Time
Cherkassky 1977 O(V2E0.5) O(E) Exact Deterministic Time & Space
Sleator & Tarjan 1983 O(VELogV) O(E) Exact Deterministic Time
Goldberg & Tarjan 1986 O(VELog(V2/E)) O(E) Exact Deterministic Time
Ahuja & Orlin 1987 O(VE+V2LogU) O(ELogU) Exact Deterministic Time
Goldberg & Rao 1997 O(E1.5Log(V2/E)LogU) O(V+E) Exact Deterministic Time
Goldberg & Rao 1997 O(V0.66ELog(V2/E)LogU) O(V+E) Exact Deterministic Time
Ahuja et al. 1987 O(VELog(V(LogU)^{0.5} / E)) Exact Deterministic Time
MKM Algorithm 1978 O(V3) O(E) Exact Deterministic Time & Space
Galil 1978 O(V(5/3)E^({2}/{3})) O(E) Exact Deterministic Time & Space
Shiloach 1981 O(V3log(V)/p) O(E) Exact Parallel Time
Gabow 1985 O(VElogU) O(E) Exact Deterministic Time
Lee, Sidford 2014 O(Esqrt(V)*log^{2}(U)*polylog(E, V, log(U)) O(E) Exact Deterministic Time
Madry 2016 O(E(10/7)U^({1}/{7})polylog(V, E, log U)) O(E) Exact Deterministic Time
Kathuria, Liu, Sidford 2020 O(E(1+o(1))/sqrt(eps)) O(E) or O(V2) ? 1+eps Deterministic Time
Kathuria, Liu, Sidford 2020 O(E(4/3+o(1))U^({1}/{3})) O(E) or O(V2) ? Exact Deterministic Time
Brand et al 2021 O((E+V1.5)log(U)polylog(V, E, log U)) O(E) Exact Randomized Time
Gao, Liu, Peng 2021 O(E(3/21/328)*log(U)*polylog(E)) O(E) Exact Deterministic Time
Chen et al 2022 O(E(1+o(1))*log(U)) O(E) Exact Deterministic Time
Goldberg & Rao (Parallel) 1997 O(V1.66log(V) log(U)) O(V2) Exact Parallel Time & Space
Goldberg & Rao (Parallel) 1997 O(E0.5Vlog(V) log(U)) O(V2) Exact Parallel Time & Space

Time Complexity Graph

Maximum Flow - Integer Maximum Flow - Time.png

Space Complexity Graph

Maximum Flow - Integer Maximum Flow - Space.png

Space-Time Tradeoff Improvements

Maximum Flow - Integer Maximum Flow - Pareto Frontier.png

References/Citation

https://arxiv.org/abs/2203.00671,