3SUM' (3SUM)
Jump to navigation
Jump to search
Description
Given three sets of integers $A, B, C$ of total size $n$, are there $a\in A, b\in B, c\in C$ such that $a + b = c$?
Related Problems
Generalizations: 3SUM
Related: Real 3SUM, All-Integers 3SUM
Parameters
n: number of integers in each set
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
3SUM | if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$ then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$ |
1995 | https://doi.org/10.1016/0925-7721(95)00022-2 | link |
GeomBase | if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$ then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$ |
1995 | https://doi.org/10.1016/0925-7721(95)00022-2 | link |
Static Dihedral Rotation Queries | if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$ then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$ |
2003 | https://doi.org/10.1016/S0925-7721(02)00156-6 | link |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
3SUM | if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$ then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$ |
1995 | https://doi.org/10.1016/0925-7721(95)00022-2 | link |
GeomBase | if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$ then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$ |
1995 | https://doi.org/10.1016/0925-7721(95)00022-2 | link |