# DAG Realization Problem (Graph Realization Problems)

Jump to navigation
Jump to search

## Description

Given a sequence $S := (a_1, b_1), \ldots, (a_n, b_n)$ with $a_i, b_i \in \mathbb{Z}_0^+$, does there exist a directed acyclic graph (DAG) (no parallel arcs allowed) with labeled vertex set $V := \{v_1, \ldots , v_n\}$ such that for all $v_i \in V$ indegree and outdegree of $v_i$ match exactly the given numbers $a_i$ and $b_i$, respectively?

## Related Problems

Generalizations: Digraph Realization Problem

## Parameters

$n$: number of degree pairs

## Table of Algorithms

Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|

Berger & Müller-Hannemann | 2011 | $O(\exp(n)$) | ? | Exact | Deterministic | Time |

## Time Complexity Graph

## References/Citation

https://link.springer.com/chapter/10.1007/978-3-642-30870-3_29