# Gröbner Bases (Gröbner Bases)

(Redirected from Family:Gröbner Bases)

Jump to navigation
Jump to search
## Description

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring $K(x_1, \ldots ,x_n)$ over a field $K$. As an algorithmic problem, given a set of polynomials in $K(x_1, \ldots,x_n)$, determine a Gröbner basis.

## Parameters

$n$: number of variables in each polynomial

$d$: maximal total degree of the polynomials

## Table of Algorithms

Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|

Buchberger's algorithm | 1976 | d^{({2}^{(n+o({1})})}) | d^{({2}^{(n+o({1}))})}?? | Exact | Deterministic | Time |

Faugère F4 algorithm | 1999 | $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication | $O(C(n+D_{reg}, D_{reg})$^{2})? | Exact | Deterministic | Time |

Faugère F5 algorithm | 2002 | $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication | $O(C(n+D_{reg}, D_{reg})$^{2})? | Exact | Deterministic | Time |