General Linear System (Linear System)
Jump to navigation
Jump to search
Description
A system of linear equations (or linear system) is a collection of one or more linear equations involving the same set of variables. This is typically written in the form $Ax=b$ where $A$ is a matrix and $x, b$ are vectors. In this case, we impose no restrictions on $A$.
Related Problems
Subproblem: Sparse Linear System, Positive Definite, Hermitian Matrix, Non-Definite, Symmetric Matrix, Toeplitz Matrix, Vandermonde Matrix
Related: Positive Definite, Hermitian Matrix, Non-Definite, Symmetric Matrix, Toeplitz Matrix, Vandermonde Matrix
Parameters
$n$: number of variables and number of equations
$m$: number of nonzero entries in matrix
$k$: ratio between largest and smallest eigenvalues
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Gaussian-Jordan Elimination | -150 | $O(n^{3})$ | $O(n^{2})$ | Exact | Deterministic |