Largest Common Subtree (Graph Isomorphism Problem)

From Algorithm Wiki
Revision as of 10:24, 15 February 2023 by Admin (talk | contribs) (Created page with "{{DISPLAYTITLE:Largest Common Subtree (Graph Isomorphism Problem)}} == Description == Find a largest tree which occurs as a common subgraph in a given collection of trees. == Related Problems == Generalizations: Graph Isomorphism, General Graphs Subproblem: Subtree Isomorphism Related: Graph Isomorphism, Bounded Number of Vertices of Each Color, Graph Isomorphism, Trivalent Graphs, Graph Isomorphism, Bounded Vertex Valences == Parameters ==...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Description

Find a largest tree which occurs as a common subgraph in a given collection of trees.

Related Problems

Generalizations: Graph Isomorphism, General Graphs

Subproblem: Subtree Isomorphism

Related: Graph Isomorphism, Bounded Number of Vertices of Each Color, Graph Isomorphism, Trivalent Graphs, Graph Isomorphism, Bounded Vertex Valences

Parameters

n: number of vertices in the largest tree in the collection

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
McKay 1981 $O((m1 + m2)n^{3} + m2 n^{2} L)$ ${2}mn+{10}n+m+(m+{4})K+{2}mL$ Exact Deterministic Time
Schmidt & Druffel 1976 $O(n*n!)$ $O(n^{2})$ Exact Deterministic Time
Babai 2017 {2}^{$O(\log n)$^3} Exact Deterministic Time

Reductions FROM Problem

Problem Implication Year Citation Reduction
OV assume: OVH
then: for all constants $d \geq {2}$, target on two rooted trees of size at most $n$, degree $d$, and height $h \leq \log_d n + O(\log \log n)$ cannot be solved in truly subquadtratic $O(n^{2-\epsilon})$ time
2018 https://dl.acm.org/doi/pdf/10.1145/3093239 link